采用湿法脱硫工艺, 要考虑吸收器的性能, 其性能的优劣直接影响烟气的脱硫效率、系统的运行费用等。旋流板塔吸收器具有负荷高、压降低、不易堵、弹性好等优点, 可以快速吸收烟尘, 具有很高的脱硫效率。
1 主要设计指标
1) 二氧化硫( SO2) 排放浓度<500mg/m3, 脱硫效率≥80.0%;
2) 烟尘排放浓度<150mg/m3, 除尘效率≥99.3%;
3) 烟气排放黑度低于林格曼黑度Ⅰ级;
4) 处理烟气量≥15000m3/h;
5) 处理设备阻力在800~1100 Pa之间, 并保证出口烟气不带水;
6) 出口烟气含湿量≤8.0%。
2 脱硫除尘工艺及脱硫吸收器比较选择
2.1 脱硫除尘工艺比较选择
脱硫除尘工艺比较选择如表1 所示
脱硫工艺 |
湿法 |
半干法 |
干法 | |||||||
石灰石石膏法 |
钠法 |
双碱法 |
氧化镁法 |
氨法 |
海水法 |
喷雾干燥 |
炉内喷钙 |
循环流化床 |
等离子体 | |
脱硫效率/% |
90~98 |
90~98 |
90~98 |
90~98 |
90~98 |
70~90 |
70~85 |
60~75 |
60~90 |
≥90 |
可靠性 |
高 |
高 |
高 |
高 |
一般 |
高 |
一般 |
一般 |
高 |
高 |
结垢 |
易结垢 |
不结垢 |
不结垢 |
不结垢 |
不结垢 |
不结垢 |
易结垢 |
易 |
易 |
不结垢 |
堵塞 |
堵塞 |
堵塞 |
不堵塞 |
不堵塞 |
不堵塞 |
不堵塞 |
堵塞 |
堵塞 |
堵塞 |
不堵塞 |
占地面积 |
大 |
小 |
中 |
小 |
大 |
中 |
中 |
中 |
中 |
中 |
运行费用 |
高 |
很高 |
一般 |
低 |
高 |
低 |
一般 |
一般 |
一般 |
一般 |
投资 |
大 |
小 |
较小 |
小 |
大 |
较小 |
较小 |
小 |
较小 |
大 |
2.2 脱硫吸收器比较选择
脱硫吸收器的选择原则, 主要是看其液气接触条件、设备阻力以及吸收液循环量。脱硫吸收器比较选择如表2 所示。
吸收器类型 |
持液量 |
逆流接触 |
防堵性能 |
操作弹性 |
设备阻力 |
除尘性能 |
喷淋塔 |
低 |
是 |
中 |
较好 |
低 |
差 |
填料塔 |
高 |
是 |
差 |
较好 |
中 |
中 |
湍球塔 |
中 |
是 |
好 |
中 |
中 |
较好 |
筛板塔 |
中 |
是 |
中 |
中 |
中 |
较好 |
旋流板塔 |
高 |
是 |
好 |
好 |
低 |
好 |
3 脱硫除尘原理
3.1 氧化镁法脱硫原理
氧化镁法脱硫的主要原理: 在洗涤中采用含有MgO的浆液作脱硫剂, MgO被转变为亚硫酸镁(MgSO3) 和硫酸镁(MgSO4) , 然后将硫从溶液中脱除。氧化镁法脱硫工艺有如下特点:
1) 氧化镁法脱硫工艺成熟, 目前日本、中国台湾应用较多, 国内近年有一些项目也开始应用。
2) 脱硫效率在90.0%~95.0%之间。
3) 脱除等量的SO2, MgO 的消耗量仅为CaCO3 的40.0%。
4) 要达到90.0%的脱硫效率, 液气比在3~5L/m3之间, 而石灰石-石膏工艺一般要在10~15L/m3之间。
5) 我国MgO储量约80亿t, 居世界首位, 生产量居世界第一。
3.2 旋流板塔吸收器脱硫除尘原理
来自锅炉的含尘烟气首先进入文丘里管, 进行初级喷雾降尘脱硫处理, 而后以15~22m/s 的流速切向进入旋流板塔筒体, 首先通过离心力的作用,烟气中的大颗粒被甩向塔壁, 并被自上而下流动的吸收液捕集。当烟气高速通过旋流塔板时, 叶片上的吸收液被吹成很小的雾滴, 尘粒、吸收液和雾滴相互之间在碰撞、拦截、布朗运动等机理的作用下, 粒子间发生碰撞, 粒径不断增大。同时高温烟气向液体传热时, 尘粒被降温, 使水汽凝结在粒子表面, 粒子质量也随之增大, 在旋流塔板的导向作用下, 旋转运动加剧, 产生强大的离心力, 粉尘很容易从烟气中脱离出来被甩向塔壁, 在重力作用下流向塔底, 实现气固分离。
对于烟气中那些微细尘粒, 在通过一级塔板后不可能全部被捕集, 还有一定数量的尘粒逸出, 当其通过多层塔板后, 微细尘粒凝并, 质量不断增大后被捕集、分离, 从而达到最佳除尘效果。
4 脱硫除尘工艺设计
4.1 主要设计参数
主要设计参数: 处理烟气量15000 m3/h; 烟气 温度150~160 ℃; 脱硫除尘塔入口烟温150~160 ℃;脱硫除尘塔出口烟温55 ℃; 脱硫塔入口烟气SO2 浓度2500mg/m3 ( 计算值) ; 脱硫效率>83.0% ( 设计值) ; 脱硫剂氧化镁粉>200目, 纯度>90.0%; 液气比2~3 L/m3; 脱硫剂耗量14kg/h (max) ; 脱硫剂浆液浓度10.0%; 吸收塔入口烟气粉尘浓度22g/m3( 计算值) ; 除尘效率99.3% ( 设计值) 。
4.2 脱硫除尘工艺设计说明
烟气脱硫除尘工艺可分为脱硫剂配制系统、烟气脱硫除尘系统和循环水系统三大部分。
每台锅炉配备1台旋流板塔, 锅炉烟气从烟道切向进入文丘里而后高速进入主塔底部, 在塔内螺旋上升中与沿塔下流的脱硫液接触, 进行脱硫除尘, 经脱水板除雾后, 由引风机抽出排空。
脱硫液从旋流板塔上部进入, 在旋流板上被气流吹散, 进行气液两相的接触, 完成脱硫除尘器后从塔底流出, 通过明渠流到综合循环池。
4.3 脱硫剂制备系统工艺流程设计说明
脱硫剂MgO乳液的制备系统主要由灰斗、螺旋给料机、乳液贮槽、搅拌机、乳液泵等组成。
4.4 脱硫除尘工艺设备设计说明
1) 文丘里管: 文丘里管由满缩管、吼管和扩张管三部分组成。
2) 旋流板塔: 脱硫除尘塔( 旋流板塔) 塔体采用麻石砌筑, 主塔平台、支架、梯子等为碳钢,塔内件包括喷头、旋流板、脱水器、检修孔、支架、接管, 这些物件均采用316L不锈钢材质, 以确保整套装置的使用寿命。
设备外径为2540 mm ( 塔壁厚220mm) , 高度为17000mm。
3) 副塔: 塔体采用麻石砌筑, 主塔平台、支架、梯子等为碳钢, 塔内包括一层脱水器, 增加脱水效果。
设备外径为2000mm ( 塔壁厚200mm) , 高度为17000mm。
4.5 废水处理系统
脱硫废水产生量较小, 约0.5t/h, pH 在6~7 之间, 主要含SO3, MgSO4和固体悬浮物等, 建议将其汇入工厂原有沉淀池污水处理系统一并处理。
4.6 烟气排放分析
经湿法脱硫洗涤净化后的冷烟气经脱水器脱水后, 温度降至露点以下, 通常为50~60 ℃, 所含水蒸气已近饱和, 极易结露, 对后续烟道腐蚀性较大, 采用蒸汽再热器提高烟气扩散温度( ≥80 ℃)后经烟囱排放。
通过对锅炉烟气污染物净化, 最终排放烟气中污染物浓度预计为: 烟尘≤140mg/m3, SO2≤450mg/m3。
5 投资估算和经济分析
1) 工程主要费用: 46.01万元。
2) 运行费用: 按月运行720h ( 30d×24h/d) ,电费0.6 元/度, 水费1.62 元/t, MgO450 元/t 计,职工月工资按800 元/人计, 各项运行费用合计0.69 万元/月。
3) 效益: 环境效益, 每月减少烟尘排放472.0t, SO2排放45.4 t; 综合社会效益, 按国内外资料统计, 以每排放1.0 t SO2引起综合经济损失500元计, 每月可减少综合经济损失2.27 万元; 企业效益, 节支增收合计每月25.86 万元。
5 结论
1) 旋流板塔氧化镁湿法除尘脱硫工艺通过工程实例证明, 其系统运行可靠性高, 除尘脱硫效率高,完全达到了国家环保标准, 在技术上是完全可靠的。
2) 旋流板塔氧化镁湿法除尘脱硫技术投资少,占地面积小, 运行费用低, 非常适合我国的国情。
3) 旋流板塔氧化镁湿法除尘脱硫技术不但在技术和经济上是可行的, 而且经济效益和社会效益都非常显著。